Synergistic Effect of Co and Mn Co-Doping on SnO2 Lithium-Ion Anodes

نویسندگان

چکیده

The incorporation of transition metals (TMs) such as Co, Fe, and Mn into SnO2 substantially improves the reversibility conversion alloying reaction when used a negative electrode active material in lithium-ion batteries. Moreover, it was shown that specific benefits different TM dopants can be combined introducing more than one dopant lattice. Herein, careful characterization Co co-doped via transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy diffraction including Rietveld refinement is reported. Based on this in-depth investigation crystal structure distribution two within lattice, an ex situ photoelectron absorption were performed to better understand de-/lithiation mechanism synergistic impact co-doping. results specifically suggest antithetical redox behaviour might play decisive role for enhanced reaction.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries

In this work, a synergistic effect of reduced graphene oxide (rGO) and polypyrrole (PPy) was studied in terms of their promotional role to enhance the capacity and cyclic stability of hollow SnO2 anodes in lithium-ion batteries. The core–shell structured hollow SnO2/rGO/PPy nanocomposites were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. Substant...

متن کامل

Effect of Nb and F Co-doping on Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material for High-Performance Lithium-Ion Batteries

The Li1.2Mn0.54−xNbxCo0.13Ni0.13O2−6xF6x (x = 0, 0.01, 0.03, 0.05) is prepared by traditional solid-phase method, and the Nb and F ions are successfully doped into Mn and O sites of layered materials Li1.2Mn0.54Co0.13Ni0.13O2, respectively. The incorporating Nb ion in Mn site can effectively restrain the migration of transition metal ions during long-term cycling, and keep the stability of the ...

متن کامل

The Effect of Mn Co-doping on the Electrochemical Properties of Gd0.2Ce0.8O1.9- /Pt Model-composite Electrodes

Model-type thin films of Gd doped and Gd/Mn co-doped ceria were investigated by means of impedance spectroscopy in a humid H2 atmosphere. A novel measurement technique for microelectrodes with interdigitating Pt current collectors was employed. This method allows a separation of the different elementary processes contributing to the electrode impedance. After annealing at 650°C in humid H2 atmo...

متن کامل

Sn- and SnO2-Graphene Flexible Foams Suitable as Binder- Free Anodes for Lithium Ion Batteries

With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of a novel three dimensional (3D) macroporous foams formed by reduced graphene oxide (rGO) and submicron tin-based particles. The aerogels were obtained by freeze/freeze-drying a suspension of graphene oxide (GO) in the presence of a tin...

متن کامل

Tuneable Giant Magnetocaloric Effect in (Mn,Fe)2(P,Si) Materials by Co-B and Ni-B Co-Doping

The influence of Co (Ni) and B co-doping on the structural, magnetic and magnetocaloric properties of (Mn,Fe) 2 (P,Si) compounds is investigated by X-ray diffraction (XRD), differential scanning calorimetry, magnetic and direct temperature change measurements. It is found that Co (Ni) and B co-doping is an effective approach to tune both the Curie temperature and the thermal hysteresis of (Mn,F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inorganics (Basel)

سال: 2022

ISSN: ['2304-6740']

DOI: https://doi.org/10.3390/inorganics10040046